Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Takashiro Akitsu* and Yasuaki Einaga

Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

Correspondence e-mail:
akitsu@chem.keio.ac.jp

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.048$
$w R$ factor $=0.150$
Data-to-parameter ratio $=20.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(N-ethylethylenediamine- $\kappa^{2} N, N^{\prime}$)copper(II)-hexacyanocobaltate(III)-water (3/2/4): a two-dimensional ladder structure of a bimetallic assembly

The title compound, poly[[tetracyano-octa- μ-cyano-hexakis(N -ethylethylenediamine)tricopper(II)dicobaltate(III)] tetrahydrate $]$, $\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{2}\right]_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ or $\left\{\left[\mathrm{Cu}_{3} \mathrm{Co}_{2^{-}}\right.\right.$ $\left.\left.(\mathrm{CN})_{12}\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{6}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, was crystallized from an aqueous reaction mixture containing $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}, N$-ethylethylenediamine and $\mathrm{K}_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$ in a self-assembling process. The polymeric chains are extended through $-\mathrm{Co}^{\mathrm{III}}-\mathrm{CN}-\mathrm{Cu}^{\mathrm{II}}-$ linkages involving four or two cyanide ligands of the centrosymmetric $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ complex ions, forming a twodimensional ladder structure. The $\mathrm{Cu}^{\mathrm{II}}$ atoms, one of which also lies on an inversion centre, have a distorted octahedral coordination geometry, the degree of tetragonal Jahn-Teller distortion being $T=0.785$ and 0.810 (T is the ratio of mean inplane $\mathrm{Cu}-\mathrm{N}$ bond lengths to axial $\mathrm{Cu}-\mathrm{N}$ bond lengths). This local Jahn-Teller distortion results from the anisotropic features of this two-dimensional cyano-bridged structure.

Comment

The design of photofunctional transition-metal complexes such as $\mathrm{Fe}-\mathrm{Co}$ Prussian blue analogues is one of the challenges in materials science (Sato, 2003; Sato et al., 2003). Recently, Escax et al. (2005) elucidated that photo-induced magnetization of $\mathrm{Fe}-\mathrm{Co}$ Prussian blue analogues caused three-dimensional structural strain, which weakens the ligand field strength of the cyanide ligands. Magneto-structural correlations of cyano-bridged bimetallic assemblies (Ohba \& Okawa, 2000; Okawa \& Ohba 2002) and the photophysical properties of the $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ building block (Alexander \& Gray 1968; Azumi \& McGlynn 2004) have also been investigated. JahnTeller switching in response to an applied stress has been proposed in the field of solid-state coordination chemistry (Falvello, 1997). Among the characteristic stereochemistry of copper(II) complexes, the (pseudo) Jahn-Teller effect predicts that only appropriately elongated axial bonds may be effective for thermally accessible distortion, and these systems may be very important for designing photo-controlling materials. We have now prepared and structurally characterized a new twodimensional cyano-bridged $\mathrm{Cu}^{\mathrm{II}}-\mathrm{Co}^{\mathrm{III}}$ bimetallic assembly, (I), and discuss here the Jahn-Teller distortion of the $\mathrm{Cu}^{\mathrm{II}}$ sites (Simmons, 1993; Murphy \& Hathaway, 2003).

Received 23 January 2006
Accepted 6 March 2006

Figure 1
The asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) $2-x, 1-y, 1-z$; (ii) $1-x,-y, 2-z$; (iii) $-x,-y, 2-z$.]

Figure 2
The two-dimensional cyanide-bridged network of (I). H atoms have been omitted for clarity.

The asymmetric unit of (I) consists of one and a half $[\mathrm{Cu}(N-$ Eten $\left.)_{2}\right]^{2+}$ cations $(N$-Eten $=N$-ethylethylenediamine $)$, two half $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ anions, and two water molecules of crystallization (Fig. 1). Atoms $\mathrm{Cu} 2, \mathrm{Co} 1$ and Co 2 are located at centre of symmetry. The $\left[\mathrm{Cu}(N \text {-Eten })_{2}\right]^{2+}$ cations are linked to the $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ anions through cyanide bridges to give a twodimensional ladder-like structure, the vertical chains of which run along the a axis (Fig. 2). The bond distance ranges include: $\mathrm{Co}-\mathrm{C} 1.887$ (3)-1.899 (3) A, $\mathrm{Cu}-\mathrm{N}$ (in-plane) 1.998 (3)2.070 (3) \AA and $\quad \mathrm{C}-\mathrm{N}($ cyanide $) \quad 1.133$ (5)-1.157 (4) \AA (Table 1). These values are comparable with the analogous cyano-bridged $\mathrm{Cu}^{\mathrm{II}}-\mathrm{Co}^{\text {III }}$ bimetallic assemblies (Ferbinteanu et al., 1999; Mondal et al., 2001; Li et al., 2002; Marvaud et al., 2003; Saha et al., 2004). The axial $\mathrm{Cu}-\mathrm{N}$ bond distances are 2.366 (3)-2.828 (3) A. There are intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O} / \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2), where the acceptor N atoms are those of the cyanide groups.

In the two-dimensional ladder structure, the horizontal bridge (related to Cu 1) is more strained than the vertical bridge (related to Cu2, see Fig. 2). The degrees of tetragonal Jahn-Teller distortion of the Cu 1 and Cu 2 sites are $T=0.785$ and 0.810 , respectively (T is the ratio of mean in-plane $\mathrm{Cu}-X$ bond lengths to axial $\mathrm{Cu}-X$ bond lengths; Hathaway \& Billing, 1970). The T values for mononuclear $\left[\mathrm{Cu}(\mathrm{en})_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, which shows considerable temperatureinduced distortion, are $0.780,0.785$ and 0.791 at 297, 274 and 120 K, respectively (en = ethylenediamine; Akitsu \& Einaga, 2004). Therefore, the structural dimensionality of the cyanobridges in (I) may be ascribed to the anisotropic Jahn-Teller distortion of bimetallic assemblies in the solid state. On the other hand, no significant characteristic in-plane distortion (e.g. cis- or trans $-\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ bond angles) could be observed, notwithstanding the asymmetric introduction of N-ethyl groups.

Experimental

Compound (I) was obtained by slow diffusion of an aqueous solution $(30 \mathrm{ml})$ of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}(0.375 \mathrm{~g}, 1.00 \mathrm{mmol})$ and N-ethylethylenediamine ($0.176 \mathrm{~g}, 2.00 \mathrm{mmol}$) into an aqueous solution (30 ml) of $\mathrm{K}_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right](0.165 \mathrm{~g}, 5.00 \mathrm{mmol})$ at 298 K . The mixed solution was left to stand in the dark for a few days. Blue plate-like single crystals of (I) were obtained (yield 0.224 g). Analysis calculated for $\mathrm{C}_{36} \mathrm{H}_{80} \mathrm{~N}_{24} \mathrm{Co}_{2} \mathrm{Cu}_{3} \mathrm{O}_{4}$: C 35.39 , H 6.60 , N 27.52%; found: C 35.35 , H 6.91 , N 27.50%. IR (KBr): $2118 \mathrm{~cm}^{-1}$ (cyanide). Electronic spectrum (diffuse reflectance): $17500 \mathrm{~cm}^{-1}$ ($d-d$ transition of $\mathrm{Cu}^{\mathrm{II}}$ ion of ${ }^{2} E$ ground state).

Crystal data

$\left[\mathrm{Cu}_{3} \mathrm{Co}_{2}(\mathrm{CN})_{12}\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{6}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$	$Z=1$
$M_{r}=1221.75$	$D_{x}=1.450 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=9.9783(11) \AA$	Cell parameters from 25
$b=11.976(3) \AA$	reflections
$c=12.060(2) \AA$	$\theta=10.1-14.6^{\circ}$
$\alpha=78.131(15)^{\circ}$	$\mu=1.76 \mathrm{~mm}^{-1}$
$\beta=82.769(11)^{\circ}$	$T=298(2) \mathrm{K}$
$\gamma=88.851(12)^{\circ}$	Plate, blue
$V=1399.1(5) \AA^{\circ}$	$0.60 \times 0.30 \times 0.10 \mathrm{~mm}$

$Z=1$
${ }_{x}$ K α radiation
Mo $K \alpha$ radiation reflections
$\theta=10.1-14.6^{\circ}$
$\mu=1.76 \mathrm{~mm}$
Plate, blue
$0.60 \times 0.30 \times 0.10 \mathrm{~mm}$

Data collection

Rigaku AFC-7R diffractometer

$$
R_{\text {int }}=0.059
$$ $\omega / 2 \theta$ scans

Absorption correction: ψ scan (North et al., 1968) $T_{\text {min }}=0.398, T_{\text {max }}=0.839$
7176 measured reflections
6418 independent reflections
5277 reflections with $I>2 \sigma(I)$

$$
\theta_{\max }=27.5^{\circ}
$$

$h=-5 \rightarrow 12$
$k=-15 \rightarrow 15$
$l=-15 \rightarrow 15$
3 standard reflections every 150 reflections intensity decay: 3.8%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.150$
$S=1.16$
6418 reflections
317 parameters
H -atom parameters constrained

$$
\begin{aligned}
& \left.\begin{array}{rl}
w= & 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0966 P)^{2}\right. \\
\quad & +0.7656 P] \\
\quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=1.58 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-1.09 \mathrm{e}^{-3} \\
\text { Extinction correction: SHELXL97 } \\
\quad \text { (Sheldrick, 1997) } \\
\text { Extinction coefficient: } 0.028
\end{array}\right\} .(3)
\end{aligned}
$$

H atoms bonded to C and N atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.96-0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.90-0.91 \AA$, and included in the final cycles of refinement using riding constraints, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. The water H -atom positions were calculated based on some peaks observed in the difference Fourier map, with $\mathrm{O}-\mathrm{H}=0.95 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$. The large displacements of atoms C 7 and C 8 , the short $\mathrm{C} 7-\mathrm{C} 8$ distance and the smaller $\mathrm{N} 7-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 8$ torsion angle than for the other chelate rings suggest positional disorder of these C atoms. The highest peak is located $0.94 \AA$ from atom Cu1 and the deepest hole $0.80 \AA$ also from Cu 1 .

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

Table 1
Selected geometric parameters ($\left(\AA^{\circ}\right)$.

Cu1-N9	1.998 (3)	Co1-C3	1.899 (3)
$\mathrm{Cu} 1-\mathrm{N} 7$	2.012 (3)	Co2-C6	1.895 (3)
$\mathrm{Cu} 1-\mathrm{N} 8$	2.058 (3)	Co2-C5	1.894 (3)
$\mathrm{Cu} 1-\mathrm{N} 10$	2.070 (3)	Co2-C4	1.896 (3)
$\mathrm{Cu} 1-\mathrm{N} 1$	2.366 (3)	N1-C1	1.157 (4)
$\mathrm{Cu} 1-\mathrm{N} 4$	2.828 (3)	N2-C2	1.153 (4)
$\mathrm{Cu} 2-\mathrm{N} 11$	2.027 (3)	N3-C3	1.133 (5)
$\mathrm{Cu} 2-\mathrm{N} 12$	2.064 (2)	N4-C4	1.143 (4)
$\mathrm{Cu} 2-\mathrm{N} 6$	2.522 (3)	N5-C5	1.153 (4)
Co1-C1	1.887 (3)	N6-C6	1.141 (4)
Co1-C2	1.895 (3)		
N9-Cu1-N7	168.90 (12)	$\mathrm{C} 1{ }^{\mathrm{ii}}-\mathrm{Co} 1-\mathrm{C} 2$	90.36 (12)
N9-Cu1-N8	92.95 (12)	$\mathrm{C} 1-\mathrm{Co} 1-\mathrm{C} 2$	89.64 (12)
N7-Cu1-N8	84.29 (12)	C1-Co1-C3	88.58 (13)
N9-Cu1-N10	84.96 (11)	$\mathrm{C} 2-\mathrm{Co} 1-\mathrm{C} 3$	89.99 (15)
N7-Cu1-N10	96.43 (11)	$\mathrm{C} 1-\mathrm{Co} 1-\mathrm{C3}^{\text {ii }}$	91.42 (13)
N8-Cu1-N10	172.71 (11)	$\mathrm{C} 2-\mathrm{Co} 1-\mathrm{C}^{\text {ii }}$	90.01 (15)
$\mathrm{N} 9-\mathrm{Cu} 1-\mathrm{N} 1$	95.31 (10)	C6-Co2-C5iii	92.56 (13)
N7-Cu1-N1	95.71 (11)	C6-Co2-C5	87.44 (12)
$\mathrm{N} 8-\mathrm{Cu} 1-\mathrm{N} 1$	97.37 (12)	$\mathrm{C} 6-\mathrm{Co} 2-\mathrm{C}^{\text {iiii }}$	91.05 (11)
N10-Cu1-N1	89.79 (10)	$\mathrm{C} 5-\mathrm{Co} 2-\mathrm{C} 4{ }^{\text {iii }}$	90.94 (13)
$\mathrm{N} 11-\mathrm{Cu} 2-\mathrm{N} 12$	84.54 (10)	C6-Co2-C4	88.95 (11)
$\mathrm{N} 11^{\text {i }}-\mathrm{Cu} 2-\mathrm{N} 12$	95.46 (10)	C5-Co2-C4	89.06 (13)
Symmetry codes: $-x+1,-y,-z+2$	$-x,-y,-z$	(ii) $-x+2$,	+ 1; (iii)

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{~N}{ }^{\text {iv }}$	0.95	1.97	2.899 (8)	165
$\mathrm{O} 1-\mathrm{H} 1 B \cdots{ }^{\text {d }}$	0.96	2.03	2.979 (6)	174
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 2^{\text {iv }}$	0.95	2.15	3.086 (5)	170
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O} 1$	0.95	1.84	2.792 (6)	176
$\mathrm{N} 7-\mathrm{H} 7 \mathrm{C} \cdots \mathrm{N} 2$	0.90	2.36	3.206 (4)	156
N7-H7D \cdots N6 ${ }^{\text {iii }}$	0.90	2.39	3.183 (4)	146
$\mathrm{N} 8-\mathrm{H} 8 \mathrm{C} \cdots \mathrm{O} 2$	0.91	2.29	3.146 (4)	157
N9-H9C \cdots N1 ${ }^{\text {vi }}$	0.90	2.34	3.162 (4)	152
N9-H9D . .N4	0.90	2.92	3.204 (4)	100
$\mathrm{N} 11-\mathrm{H} 11 \mathrm{C} \cdots \mathrm{N} 6^{\text {i }}$	0.90	2.99	3.280 (3)	101
$\mathrm{N} 11-\mathrm{H} 11 \mathrm{D} \cdots \mathrm{N} 2^{\text {iii }}$	0.90	2.35	3.190 (4)	156

