## metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Takashiro Akitsu\* and Yasuaki Einaga

Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

Correspondence e-mail: akitsu@chem.keio.ac.jp

#### **Key indicators**

Single-crystal X-ray study T = 298 KMean  $\sigma$ (C–C) = 0.006 Å R factor = 0.048 wR factor = 0.150 Data-to-parameter ratio = 20.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# Bis(*N*-ethylethylenediamine- $\kappa^2 N$ ,*N'*)copper(II)hexacyanocobaltate(III)-water (3/2/4): a two-dimensional ladder structure of a bimetallic assembly

The title compound, poly[[tetracyano-octa- $\mu$ -cyano-hexakis-(*N*-ethylethylenediamine)tricopper(II)dicobaltate(III)] tetrahydrate],  $[Cu(C_4H_{12}N_2)_2]_3[Co(CN)_6]_2 \cdot 4H_2O$  or  $\{[Cu_3Co_2 - Cu_3Co_3]_2 \cdot 4H_2O$  or  $\{[Cu_3Co_3 - Cu_3Co_3]_2 \cdot 4H_2O - Cu_3Co_3]_2 \cdot 4H_2O$  $(CN)_{12}(C_4H_{12}N_2)_6]\cdot 4H_2O_n$ , was crystallized from an aqueous reaction mixture containing Cu(ClO<sub>4</sub>)<sub>2</sub>, N-ethylethylenediamine and  $K_3[Co(CN)_6]$  in a self-assembling process. The polymeric chains are extended through -Co<sup>III</sup>-CN-Cu<sup>II</sup>linkages involving four or two cvanide ligands of the centrosymmetric  $[Co(CN)_6]^{3-}$  complex ions, forming a twodimensional ladder structure. The Cu<sup>II</sup> atoms, one of which also lies on an inversion centre, have a distorted octahedral coordination geometry, the degree of tetragonal Jahn-Teller distortion being T = 0.785 and 0.810 (T is the ratio of mean inplane Cu-N bond lengths to axial Cu-N bond lengths). This local Jahn-Teller distortion results from the anisotropic features of this two-dimensional cyano-bridged structure.

## Comment

The design of photofunctional transition-metal complexes such as Fe-Co Prussian blue analogues is one of the challenges in materials science (Sato, 2003; Sato et al., 2003). Recently, Escax et al. (2005) elucidated that photo-induced magnetization of Fe-Co Prussian blue analogues caused three-dimensional structural strain, which weakens the ligand field strength of the cvanide ligands. Magneto-structural correlations of cyano-bridged bimetallic assemblies (Ohba & Okawa, 2000; Okawa & Ohba 2002) and the photophysical properties of the  $[Co(CN)_6]^{3-}$  building block (Alexander & Gray 1968; Azumi & McGlynn 2004) have also been investigated. Jahn-Teller switching in response to an applied stress has been proposed in the field of solid-state coordination chemistry (Falvello, 1997). Among the characteristic stereochemistry of copper(II) complexes, the (pseudo) Jahn-Teller effect predicts that only appropriately elongated axial bonds may be effective for thermally accessible distortion, and these systems may be very important for designing photo-controlling materials. We have now prepared and structurally characterized a new twodimensional cyano-bridged Cu<sup>II</sup>-Co<sup>III</sup> bimetallic assembly, (I), and discuss here the Jahn-Teller distortion of the Cu<sup>II</sup> sites (Simmons, 1993; Murphy & Hathaway, 2003).



© 2006 International Union of Crystallography All rights reserved Received 23 January 2006 Accepted 6 March 2006



## Figure 1

The asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 2 - x, 1 - y, 1 - z; (ii) 1 - x, -y, 2 - z; (iii) -x, -y, 2 - z.]



### Figure 2

The two-dimensional cyanide-bridged network of (I). H atoms have been omitted for clarity.

The asymmetric unit of (I) consists of one and a half [Cu(N- $Eten_{2}^{2^{+}}$  cations (*N*-Eten = *N*-ethylethylenediamine), two half  $[Co(CN)_6]^{3-}$  anions, and two water molecules of crystallization (Fig. 1). Atoms Cu2, Co1 and Co2 are located at centre of symmetry. The  $[Cu(N-Eten)_2]^{2+}$  cations are linked to the  $[Co(CN)_6]^{3-}$  anions through cyanide bridges to give a twodimensional ladder-like structure, the vertical chains of which run along the *a* axis (Fig. 2). The bond distance ranges include: Co-C 1.887 (3)-1.899 (3) Å, Cu-N (in-plane) 1.998 (3)-2.070 (3) Å and C-N(cvanide) 1.133 (5)-1.157 (4) Å (Table 1). These values are comparable with the analogous cyano-bridged Cu<sup>II</sup>–Co<sup>III</sup> bimetallic assemblies (Ferbinteanu et al., 1999; Mondal et al., 2001; Li et al., 2002; Marvaud et al., 2003; Saha et al., 2004). The axial Cu-N bond distances are 2.366 (3)–2.828 (3) Å. There are intermolecular  $O-H \cdots O/N$ and  $N-H \cdot \cdot \cdot N$  hydrogen bonds (Table 2), where the acceptor N atoms are those of the cyanide groups.

In the two-dimensional ladder structure, the horizontal bridge (related to Cu1) is more strained than the vertical bridge (related to Cu2, see Fig. 2). The degrees of tetragonal Jahn–Teller distortion of the Cu1 and Cu2 sites are T = 0.785and 0.810, respectively (T is the ratio of mean in-plane Cu-Xbond lengths to axial Cu-X bond lengths; Hathaway & The T values for mononuclear Billing, 1970).  $[Cu(en)_2](ClO_4)_2$ , which shows considerable temperatureinduced distortion, are 0.780, 0.785 and 0.791 at 297, 274 and 120 K, respectively (en = ethylenediamine; Akitsu & Einaga, 2004). Therefore, the structural dimensionality of the cyanobridges in (I) may be ascribed to the anisotropic Jahn-Teller distortion of bimetallic assemblies in the solid state. On the other hand, no significant characteristic in-plane distortion (e.g. cis- or trans-N-Cu-N bond angles) could be observed, notwithstanding the asymmetric introduction of N-ethyl groups.

## **Experimental**

Compound (I) was obtained by slow diffusion of an aqueous solution (30 ml) of Cu(ClO<sub>4</sub>)<sub>2</sub> (0.375 g, 1.00 mmol) and *N*-ethylethylenediamine (0.176 g, 2.00 mmol) into an aqueous solution (30 ml) of K<sub>3</sub>[Co(CN)<sub>6</sub>] (0.165 g, 5.00 mmol) at 298 K. The mixed solution was left to stand in the dark for a few days. Blue plate-like single crystals of (I) were obtained (yield 0.224 g). Analysis calculated for C<sub>36</sub>H<sub>80</sub>N<sub>24</sub>Co<sub>2</sub>Cu<sub>3</sub>O<sub>4</sub>: C 35.39, H 6.60, N 27.52%; found: C 35.35, H 6.91, N 27.50%. IR (KBr): 2118 cm<sup>-1</sup> (cyanide). Electronic spectrum (diffuse reflectance): 17500 cm<sup>-1</sup> (*d*-*d* transition of Cu<sup>II</sup> ion of <sup>2</sup>*E* ground state).

Crystal data

 $[Cu_3Co_2(CN)_{12}(C_4H_{12}N_2)_6]$ ·4H<sub>2</sub>O Z = 1 $D_r = 1.450 \text{ Mg m}^{-3}$  $M_r = 1221.75$ Triclinic,  $P\overline{1}$ Mo  $K\alpha$  radiation a = 9.9783 (11) ÅCell parameters from 25 b = 11.976 (3) Å reflections c = 12.060 (2) Å  $\theta = 10.1\text{--}14.6^\circ$  $\mu = 1.76~\mathrm{mm}^{-1}$  $\alpha = 78.131 \ (15)^{\circ}$  $\beta = 82.769 (11)^{\circ}$ T = 298 (2) K  $\gamma = 88.851 \ (12)^{\circ}$ Plate, blue V = 1399.1 (5) Å<sup>3</sup>  $0.60 \times 0.30 \times 0.10 \text{ mm}$ 

## metal-organic papers

### Data collection

| Rigaku AFC-7R diffractometer           | $R_{\rm int} = 0.059$             |
|----------------------------------------|-----------------------------------|
| $\omega/2\theta$ scans                 | $\theta_{\rm max} = 27.5^{\circ}$ |
| Absorption correction: $\psi$ scan     | $h = -5 \rightarrow 12$           |
| (North et al., 1968)                   | $k = -15 \rightarrow 1$           |
| $T_{\min} = 0.398, T_{\max} = 0.839$   | $l = -15 \rightarrow 1$           |
| 7176 measured reflections              | 3 standard re                     |
| 6418 independent reflections           | every 150                         |
| 5277 reflections with $I > 2\sigma(I)$ | intensity of                      |
|                                        |                                   |

### Refinement

Refinement on  $F^2$  $R[F^2 > 2\sigma(F^2)] = 0.048$  $wR(F^2) = 0.150$ S = 1.166418 reflections 317 parameters H-atom parameters constrained 2 15 5 eflections reflections decay: 3.8%

 $w = 1/[\sigma^2(F_0^2) + (0.0966P)^2]$ + 0.7656P] where  $P = (F_0^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{\rm max} < 0.001$  $\Delta \rho_{\rm max} = 1.58 \text{ e} \text{ Å}^{-3}$  $\Delta \rho_{\rm min} = -1.09 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, 1997) Extinction coefficient: 0.028 (3)

## Table 1

Selected geometric parameters (Å, °).

| Cu1-N9                                 | 1.998 (3)          | Co1-C3                   | 1.899 (3)            |
|----------------------------------------|--------------------|--------------------------|----------------------|
| Cu1-N7                                 | 2.012 (3)          | Co2-C6                   | 1.895 (3)            |
| Cu1-N8                                 | 2.058 (3)          | Co2-C5                   | 1.894 (3)            |
| Cu1-N10                                | 2.070 (3)          | Co2-C4                   | 1.896 (3)            |
| Cu1-N1                                 | 2.366 (3)          | N1-C1                    | 1.157 (4)            |
| Cu1-N4                                 | 2.828 (3)          | N2-C2                    | 1.153 (4)            |
| Cu2-N11                                | 2.027 (3)          | N3-C3                    | 1.133 (5)            |
| Cu2-N12                                | 2.064 (2)          | N4-C4                    | 1.143 (4)            |
| Cu2-N6                                 | 2.522 (3)          | N5-C5                    | 1.153 (4)            |
| Co1-C1                                 | 1.887 (3)          | N6-C6                    | 1.141 (4)            |
| Co1-C2                                 | 1.895 (3)          |                          |                      |
| N9-Cu1-N7                              | 168.90 (12)        | C1 <sup>ii</sup> -Co1-C2 | 90.36 (12)           |
| N9-Cu1-N8                              | 92.95 (12)         | C1-Co1-C2                | 89.64 (12)           |
| N7-Cu1-N8                              | 84.29 (12)         | C1-Co1-C3                | 88.58 (13)           |
| N9-Cu1-N10                             | 84.96 (11)         | C2-Co1-C3                | 89.99 (15)           |
| N7-Cu1-N10                             | 96.43 (11)         | C1-Co1-C3 <sup>ii</sup>  | 91.42 (13)           |
| N8-Cu1-N10                             | 172.71 (11)        | C2-Co1-C3 <sup>ii</sup>  | 90.01 (15)           |
| N9-Cu1-N1                              | 95.31 (10)         | C6-Co2-C5 <sup>iii</sup> | 92.56 (13)           |
| N7-Cu1-N1                              | 95.71 (11)         | C6-Co2-C5                | 87.44 (12)           |
| N8-Cu1-N1                              | 97.37 (12)         | C6-Co2-C4 <sup>iii</sup> | 91.05 (11)           |
| N10-Cu1-N1                             | 89.79 (10)         | C5-Co2-C4 <sup>iii</sup> | 90.94 (13)           |
| N11-Cu2-N12                            | 84.54 (10)         | C6-Co2-C4                | 88.95 (11)           |
| N11 <sup>i</sup> -Cu2-N12              | 95.46 (10)         | C5-Co2-C4                | 89.06 (13)           |
| Symmetry codes: $-x + 1, -y, -z + 2$ . | (i) $-x, -y, -z+2$ | ; (ii) $-x+2, -$         | y + 1, -z + 1; (iii) |

| Table 2       |          | _   |     |
|---------------|----------|-----|-----|
| Hydrogen-bond | geometry | (Å, | °). |

| <i>D</i> ···· <i>A</i><br>2.899 (8) | $D - H \cdot \cdot \cdot A$                                                                                                                 |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 2.899 (8)                           | 165                                                                                                                                         |
|                                     | 100                                                                                                                                         |
| 2.979 (6)                           | 174                                                                                                                                         |
| 3.086 (5)                           | 170                                                                                                                                         |
| 2.792 (6)                           | 176                                                                                                                                         |
| 3.206 (4)                           | 156                                                                                                                                         |
| 3.183 (4)                           | 146                                                                                                                                         |
| 3.146 (4)                           | 157                                                                                                                                         |
| 3.162 (4)                           | 152                                                                                                                                         |
| 3.204 (4)                           | 100                                                                                                                                         |
| 3.280 (3)                           | 101                                                                                                                                         |
| 3.190 (4)                           | 156                                                                                                                                         |
|                                     | 2.899 (8)<br>2.979 (6)<br>3.086 (5)<br>2.792 (6)<br>3.206 (4)<br>3.183 (4)<br>3.162 (4)<br>3.204 (4)<br>3.204 (4)<br>3.280 (3)<br>3.190 (4) |

Symmetry codes: (i) -x, -y, -z + 2; (iii) -x + 1, -y, -z + 2; (iv) x - 1, y, z; (v) x, y, z - 1; (vi) -x + 1, -y + 1, -z + 1.

H atoms bonded to C and N atoms were placed in calculated positions, with C-H = 0.96-0.97 Å and N-H = 0.90-0.91 Å, and included in the final cycles of refinement using riding constraints, with  $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C,N})$ . The water H-atom positions were calculated based on some peaks observed in the difference Fourier map, with O-H = 0.95 Å and with  $U_{iso}(H) = 1.2U_{eq}(O)$ . The large displacements of atoms C7 and C8, the short C7-C8 distance and the smaller N7-C7-C8-N8 torsion angle than for the other chelate rings suggest positional disorder of these C atoms. The highest peak is located 0.94 Å from atom Cu1 and the deepest hole 0.80 Å also from Cu1.

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics; ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

This work was supported by a Grant-in-Aid for the 21st Century COE programme 'KEIO Life Conjugate Chemistry' from the Ministry of Education, Culture, Sports, Science and Technology, the Research Foundation for Opto-Science and Technology, and the Japan and Mizuho Foundation for the Promotion of Science.

## References

- Akitsu, T. & Einaga, Y. (2004). Bull. Chem. Soc. Jpn, 77, 763-764.
- Alexander, J. J. & Grav, H. B. (1968). J. Am. Chem. Soc. 90, 4260-4271.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Azumi, T. & McGlynn, S. P. (2004). J. Phys. Chem. A, 108, 6968-6974.
- Escax, V., Champion, G., Arrio, M.-A., Zacchigna, M., Cartier dit Moulin, C. & Bleuzen, A. (2005). Angew. Chem. Int. Ed. 44, 4798-4801.
- Falvello, L. R. (1997). J. Chem. Soc. Dalton Trans. pp. 4463-4475.
- Ferbinteanu, M., Tanase, S., Andruh, M., Journaux, Y., Cimpoesu, F., Strenger, I. & Riviere, E. (1999). Polyhedron, 18, 3019-3025.
- Hathaway, B. J. & Billing, D. E. (1970). Coord. Chem. Rev. 5, 143-207.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Li, B., Shen, X., Yu, K. & Xu, Z. (2002). J. Coord. Chem. 55, 1191-1198.
- Marvaud, V., Decroix, C., Scuiller, A., Guyard-Duhayon, C., Vaissermann, J., Gonnet, F. & Verdaguer, M. (2003). Chem. Eur. J. 8, 1678-1691.
- Molecular Structure Corporation (1989). TEXSAN. Version 1.11. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Mondal, N., Dey, D. K., Mitra, S. & Gramlich, V. (2001). Polyhedron, 20, 607-613

Murphy, B. & Hathaway, B. (2003). Coord. Chem. Rev. 243, 237-262.

- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Ohba, M. & Okawa, H. (2000). Coord. Chem. Rev. 198, 313-328.
- Okawa, H. & Ohba, M. (2002). Bull. Chem. Soc. Jpn, 75, 1191-1203.
- Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
- Saha, M. K., Lloret, F. & Bernal, I. (2004). Inorg. Chem. 43, 1969-1975.
- Sato, O. (2003). Acc. Chem. Res. 36, 692-700.
- Sato, O., Hayami, S., Einaga, Y. & Gu, Z.-Z. (2003). Bull. Chem. Soc. Jpn, 76, 443-470
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Simmons, C. J. (1993). New J. Chem. 17, 77-95.